本文转自:Matrix67: The Aha Moments

下面有 25 则概率趣题,绝大部分都能轻松用计算机加以验证(参见 《 利用 random 与 tertools 模块解决概率问题 》)。现在凭直觉(简单分析)选择一个你中意的答案,然后通过与深入分析(编程验证)得到的结果比较,测试下你属于感性派还是理性派?

  1. A 、B 、C 、D 四人玩扑克牌游戏,A 、C 两人同盟,B 、D 两人同盟。将除去大小王的 52 张牌随机分发给四人(每人获得 13 张牌)后,下面哪种情况的可能性更大一些?1
    • A 、C 两人手中都没有梅花
    • A 、C 两人手中囊括了所有的梅花
    • 上述两种情况的出现概率相同
  2. 我给 10 个好朋友分别写了一封信,并把这 10 个人的地址分别写在了 10 个信封上。如果我随机地将这 10 封信装进 10 个信封里(每封信都装进了一个不同的信封里),下面哪种情况的可能性更大一些?2
    • 恰好有 9 封信装进了正确的信封
    • 所有 10 封信都装进了正确的信封
    • 上述两种情况的出现概率相同
  3. 桌子上有 A 、 B 两个不透明的盒子,盒子 A 里有 m 个白色小球和 1 个黑色小球,盒子 B 里有 n 个白色小球和 1 个黑色小球。你需要先从盒子 A 里随机取出一个小球,再从盒子 B 里随机取出一个小球。如果两个小球都是黑色的,那么你就获胜了。下面哪种情况下,你获胜的概率更大一些?3
    • m = 5,n = 5
    • m = 4,n = 6
    • 上述两种情况的获胜概率相同
  4. 不透明的盒子里有 10 个白球和 1 个黑球,你的目标是从中取出黑球。每次,你可以从中随机取出一个小球,并观察它的颜色:如果是黑球,则达到目标,结束操作;如果是白球,则将小球放回盒子里,然后继续像这样随机取球,直到取出了黑球为止。下面哪种情况的可能性更大一些?4
    • 第 1 次就取到了黑球
    • 到第 4 次才取到黑球
    • 上述两种情况的出现概率相同
  5. 不透明的盒子里有 10 个白球和 1 个黑球。 A 、B 两人轮流从盒子里取球,每个人每次只能随机从中取出一个小球(取出的小球不再放回)。谁先取到那个黑球,谁就获得游戏的胜利。如果 A 先取,那么理论上,下面哪种情况的可能性更大一些?5
    • A 获得游戏的胜利
    • B 获得游戏的胜利
    • 上述两种情况的出现概率相同
  6. 不透明的盒子里有 2 个白球和 5 个黑球。地上还有足够多的白球和黑球。每次从盒子里随机取出两个小球,放在地上。如果刚才取出的两个小球都是白球,则从地上拿一个白球放入盒子;如果刚才取出的两个小球都是黑球,则从地上拿一个白球放入盒子;如果刚才取出的两个小球是一黑一白,则从地上拿一个黑球放入盒子。不断重复,直至盒子里只剩一个小球为止。那么,下面哪种情况的可能性更大一些?6
    • 剩下的那个小球是白球
    • 剩下的那个小球是黑球
    • 上述两种情况的出现概率相同
  7. 在一根木棒上随机选择两个点,并在这两个点处下刀,把木棒砍成三段。下面哪种情况的可能性更大一些?7
    • 这三段木棒能拼成一个三角形
    • 这三段木棒不能拼成一个三角形
    • 上述两种情况的出现概率相同
  8. 圆周上均匀分布着 100 个点。随便选择两个点连一条线段,再随便选择另外两个点连一条线段。那么,下面哪种情况的可能性更大一些?8
    • 两条线段相交
    • 两条线段不相交
    • 上述两种情况的出现概率相同
  9. 不透明的盒子里有 1000 张纸条,上面分别写有 1, 2, 3, …, 1000。 A 从盒子里随机取出 100 张纸条,并把这 100 张纸条上的数从小到大排成一排。然后,B 从盒子里剩下的纸条中随机取出 1 张纸条,并看看这张纸条上的数在 A 那里排第几位。例如,如果 A 手中的数有 50 个比 B 取出的大,另外 50 个比 B 取出的小,那么 B 手中的数就排第 51 位。那么,下面哪种情况的可能性更大一些?9
    • B 手中的数排第 1 位
    • B 手中的数排第 51 位
    • 上述两种情况的出现概率相同
  10. 把一副洗好的牌(共 52 张)背面朝上地摞成一摞,然后依次翻开每一张牌,直到翻出第一张 A 。那么,下面哪种情况的可能性更大一些?10
    • 翻开第 3 张牌时出现了第一张 A
    • 翻开第 4 张牌时出现了第一张 A
    • 上述两种情况的出现概率相同
  11. 把一副洗好的牌(共 52 张)背面朝上地摞成一摞,然后依次翻开每一张牌,直到翻出第一张 A 。那么,下面哪种情况的可能性更大一些?11
    • 再下一张牌是黑桃 A
    • 再下一张牌是黑桃 2
    • 上述两种情况的出现概率相同
  12. 把一副洗好的牌(共 52 张)背面朝上地摞成一摞。翻开最上面的那张牌,记住这张牌是什么颜色(红色还是黑色),然后将它背面朝上地放回原处。随机切一次牌(即把扑克牌随机分成上下两摞,把下面这摞牌叠在上面这摞牌的上面),然后再次翻开最上面的那张牌,记住这张牌是什么颜色(红色还是黑色)。那么,下面哪种情况的可能性更大一些?12
    • 两次看到的牌的颜色相同
    • 两次看到的牌的颜色不同
    • 上述两种情况的出现概率相同
  13. 同时抛掷 10 枚硬币,出现下面哪种情况的可能性更大一些?13
    • 正面朝上的硬币数量为偶数
    • 正面朝上的硬币数量为奇数
    • 上述两种情况的出现概率相同
  14. A 、B 两人在玩掷硬币游戏,每个人都抛掷 10 次硬币,最后谁抛出的正面更多,谁就获胜。几轮游戏下来后,A 都获胜了,B 有些沮丧。A 说:“要不这样吧,我们把游戏规则改一下。我允许你多抛掷一次硬币。也就是说,我仍然抛掷 10 次硬币,你却能抛掷 11 次硬币。但是,只有你抛掷出的正面次数严格大于我抛掷出的正面次数,才算你获胜;如果我们抛掷出的正面次数相同,那也算我获胜。”新的一轮游戏开始了,按照约定,A 抛掷了 10 次硬币,B 抛掷了 11 次硬币。理论上,下面哪种情况的可能性更大一些?14
    • A 获得游戏的胜利
    • B 获得游戏的胜利
    • 上述两种情况的出现概率相同
  15. 魔术师把一枚正常的硬币展示给观众看,然后说:“接下来,我会抛掷这枚硬币,每次它都将正面朝上。”观众听闻后议论纷纷,魔术师趁机迅速地把这枚正常的硬币换成了一枚两面都是正面的硬币。魔术师连掷 10 次硬币,次次正面朝上,赢得观众雷鸣般的掌声。其中一个观众不服气地说:“该不会你趁我们不注意,把硬币换成了两面都是正面的特殊硬币吧!如果你有本事的话,你给我们掷出一个‘正反正反……’的序列出来!”为了保住自己的颜面,魔术师只好把那枚正常的硬币变回手中,硬着头皮开始抛掷硬币。倘若魔术师抛掷硬币没有任何技巧,每次是正是反的概率相同,那么魔术师无限地抛掷下去,第一次出错更有可能出在什么地方?15
    • 该掷正面的时候掷出了反面
    • 该掷反面的时候掷出了正面
    • 上述两种情况的出现概率相同
  16. A 、B 两人为一件小事争执不休,最后决定用抛掷硬币的办法来判断谁对谁错。不过,为了让游戏过程更刺激,两人决定采用这样一种方案:连续抛掷硬币,直到最近三次硬币抛掷结果是“正反反”或者“反反正”。如果是前者,那么 A 获胜;如果是后者,那么 B 获胜。理论上,下面哪种情况的可能性更大一些?16
    • A 获得游戏的胜利
    • B 获得游戏的胜利
    • 上述两种情况的出现概率相同
  17. 同时抛掷 6 颗骰子,出现下面哪种情况的可能性更大一些?17
    • 不同数字的个数恰好为 4 个
    • 不同数字的个数为 1 、2 、3 、5 或 6 个
    • 上述两种情况的出现概率相同
  18. 小明走进一家赌场,来到了轮盘赌跟前。轮盘赌的转盘上有 38 个格子,上面分别标着 0, 00, 1, 2, 3, …, 36 。游戏开始后,一个白色小球会逆着轮盘旋转的方向滚动,最终等概率地落入 38 个格子中的一个。小明每次可以在任意一个格子上下 1 元的赌注。如果小球落入了小明所选的格子里,则小明赢得 36 元(但那 1 元钱的赌注仍然归赌场);如果小球落入了别的格子里,则小明什么也得不到(那 1 元也就打水漂了)。小明身上只有 105 元钱,于是,他连续赌了 105 次。那么,下面哪种情况的可能性更大一些?18
    • 小明赚着离开了赌场
    • 小明亏着离开了赌场
    • 上述两种情况的出现概率相同
  19. 法国有法国的轮盘赌,俄罗斯也有俄罗斯的轮盘赌。不过,战斗民族的赌博方式可不一样——不是赌钱,而是赌命。俄罗斯轮盘赌可谓是史上最酷的决斗方式。左轮手枪的转轮中有六个弹槽。在其中一个弹槽中放入一颗子弹,然后快速旋转转轮,再把它合上。参与决斗的两个人轮流对准自己的头部扣动扳机,直到其中一方死亡。这是一场真男人游戏,双方胜负的概率各占 50% ,游戏没有任何技巧可言,命运决定了一切。为了让游戏更加刺激,这一回我们稍微改变一下游戏规则。在转轮的连续三个弹槽中放入子弹,然后旋转并合上转轮。这一次,理论上,下面哪种情况的可能性更大一些?19
    • 先开枪的人死亡
    • 后开枪的人死亡
    • 上述两种情况的出现概率相同
  20. 小明上了几次象棋课,回到家得意地要和爸爸妈妈一比高低。爸爸说:“好啊,那我们来搞一次家庭挑战赛吧。比赛分三轮进行,爸爸妈妈将会作为你的对手轮番上场。如果你在任意连续的两轮比赛中获胜,你就能得到一大笔零花钱。对了,挑战赛开始前,你可以指定爸爸妈妈的出场顺序哦。”小明深知,战胜爸爸的概率更低,战胜妈妈的概率更高(事实上也的确如此)。为了提高得到零花钱的概率,小明应该怎样安排爸爸妈妈的出场顺序?20
    • 爸爸、妈妈、爸爸
    • 妈妈、爸爸、妈妈
    • 两种情况下得到零花钱的概率相同
  21. 一架客机上有 100 个座位, 100 个人排队依次登机。第一个乘客把登机牌搞丢了,但他仍被允许登机。由于他不知道他的座位在哪儿,他就随机选了一个座位坐下。以后每一个乘客登机时,如果他自己的座位是空着的,那么他就在他自己的座位坐下;否则,他就随机选一个仍然空着的座位坐下。当最后一个人登机时,发生下面哪种情况的可能性更大一些?21
    • 他发现剩下的空位正好就是他的
    • 他发现剩下的空位不是他的
    • 上述两种情况的出现概率相同
  22. 在每一代的繁殖中,每个阿米巴原虫都有 2/3 的概率分裂成两个,有 1/3 的概率死亡(而不产生下一代)。初始时只有一个阿米巴原虫,那么下面哪种情况的可能性更大一些?22
    • 阿米巴原虫在有限代之后灭绝
    • 阿米巴原虫无限地繁殖下去
    • 上述两种情况的出现概率相同
  23. 一斤白酒下肚后,我醉醺醺地来到了悬崖边上。如果我再往前迈一步,就会掉下悬崖。我每过一分钟都会往前或者往后迈一步,每次有 1/3 的概率往前迈一步,有 2/3 的概率往后迈一步。假设悬崖边是一条直线,我每步方向都严格垂直于悬崖边,且步长保持一致。如果我无限地走下去,那么下面哪种情况的可能性更大一些?23
    • 我在有限步之后将会掉下悬崖
    • 我永远不会掉下悬崖
    • 上述两种情况的出现概率相同
  24. A 、B 两支球队之间要打 100 场比赛。初始时,两支球队的经验值都为 1 。在每一场比赛中,两支球队各自的获胜概率与它们的经验值成正比,随后获胜一方的经验值将会加 1 。那么,当 100 场比赛全部打完之后,下面哪种情况的可能性更大一些?24
    • 球队 A 在所有 100 场比赛中全部获胜
    • 球队 A 在所有 100 场比赛中恰好有 50 场获胜
    • 上述两种情况的出现概率相同
  25. 从全体正整数中随机选出两个正整数,则下面哪种情况的可能性更大一些?25
    • 这两个正整数互质(没有大于 1 的公约数)
    • 这两个正整数不互质(有大于 1 的公约数)
    • 上述两种情况的出现概率相同
de Méré 问题

其实,概率论的诞生本来就和赌博游戏是紧紧联系在一起的。提到概率论的诞生,不得不提一位名叫 Antoine Gombaud 的法国作家。这人出生于 1607 年法国西部的一个小城市,他并不是贵族出身,但他却有着“骑士”的光辉头衔——不过那只是他自封的而已。他借用了一个自己笔下的人物形象名称,自封为 de Méré 骑士。后来,这个名字便逐渐取代了他的真名 Antoine Gombaud 。不过, de Méré 骑士并没有凭借自己的文学作品名扬天下,真正让他声名远扬的是他的赌博才能。而足以让他在历史上留名的,则是他对一个赌博游戏的思考。

在 17 世纪,法国赌徒间流行着一个赌博游戏:连续抛掷一颗骰子 4 次,赌里面是否会出现至少一个 6 点。这个游戏一直被视为是一个公平的赌博游戏,直到 1650 年左右, de Méré 在另一个类似的游戏中莫名其妙地输得四个荷包一样重。当时, de Méré 参加了这个赌博游戏的一个“升级版”:把两颗骰子连续抛掷 24 次,赌是否会掷出一对 6 点来。

de Méré 自己做了一番思考。同时抛掷两颗骰子出现一对 6 ,比抛掷一颗骰子出现 6 点要困难得多,前者的概率是后者的 1/6 。要想弥补这个减小了的概率,我们应当把两颗骰子连续抛掷 6 次。为了追上连续抛掷 4 次骰子出现一个 6 的概率,则应当把两颗骰子抛掷 24 次才行。 de Méré 果断地得出结论:在升级版游戏中出现一对 6 的概率,与传统游戏中出现一个 6 的概率是相等的,升级版游戏换汤不换药,与原来的游戏本质完全一样。

不过,这毕竟是不严格的直觉思维,事实情况如何还得看实战。在以前的游戏中, de Méré 总是赌“会出现 6 点”,经验告诉他这能给他带来一些细微的优势。于是这一回, de Méré 也不断押“会出现一对 6”。不料,这次他却赔得多赚得少,最终输了个精光。

这是怎么一回事儿呢?作为一个业余数学家, de Méré 感到里面有玄机。但是,凭借自己的数学知识,他没有能力解决这个难题。无奈之下,他只好求助当时的大数学家 Blaise Pascal 。

Pascal 可是真资格的数学家。他很快便意识到,这种问题的计算不能想当然,事实和直觉的出入可能会相当大。比方说, de Méré 的直觉就是有问题的:重复多次尝试确实能增大概率,但这并不是成倍地增加。抛掷一颗骰子出现 6 点的概率为 1/6 ,但这并不意味着抛掷骰子 4 次会出现一个 6 点的概率就是 1/6 的 4 倍。无妨想一个更极端的例子:按此逻辑,抛掷一颗骰子 6 次,出现至少一次 6 点的概率似乎就该是 6/6 ,也即 100% ,但这显然是不对的。如果抛掷骰子 6 次以上,出现一个 6 点的概率就会超过 100% ,这就更荒谬了。

看来,概率不能简单地加加减减,每一步推理都要有凭有据。 Pascal 考虑了游戏中所有可能出现的情况,算出了在新旧两种版本的游戏中,会出现一个(或一对) 6 点的概率分别是多少。

连续抛掷 4 次骰子,总共会产生 64 ,也就是 1296 种可能。不过在这里面,一个 6 点都没有的情况共有 54 ,也就是 625 种。反过来,至少有一个 6 点就有 1296 – 625 = 671 种情况,它占所有情况的 671 / 1296 ≈ 51.77% ,恰好比 50% 高出那么一点点。看来, de Méré 的经验是对的——众人公认的公平游戏并不公平,赌 6 点会出现确实能让他有机可乘。

那么,连续抛掷两颗骰子 24 次,能出现一对 6 的概率又是多少呢?这回计算的工程量就有点大了。两颗骰子的点数有 36 种组合,连抛 24 次则会有 3624 ,大约是 2.245 × 1037 种情况。而 24 次抛掷中,从没产生过一对 6 点的情况数则为 3524 ,大约为 1.142 × 1037 。可以算出,如果赌 24 次抛掷里会出现一对 6 ,获胜的概率是 49.14% 。又一个非常接近 50% 的数,只不过这次是比它稍小一些。

原来,升级版游戏并不是换汤不换药。两种游戏胜率虽然接近,但正好分居 50% 两边。这看似微不足道的差别,竟害得我们的“骑士”马失前蹄。

后来,这个经典的概率问题就被命名为“de Méré 问题”。在解决这个问题的过程中, Pascal 提出了不少概率的基本原理。因此, de Méré 问题常被认为是概率论的起源。

当然, de Méré 的故事多少都有一些杜撰的成分,大家或许会开始怀疑,在现今世界里,有没有什么还能玩得到的“伪公平游戏”呢?答案是肯定的。为了吸引玩家,赌场想尽各种花样精心设计了一个个迷魂阵一般的赌局。在那些最流行的赌博游戏中,庄家一方总是会稍占便宜;但游戏规则设计得如此之巧妙,以至于乍看上去整个游戏是完全公平,甚至是对玩家更有利的。“骰子掷好运”(chuck-a-luck)便是一例。

骰子掷好运

“骰子掷好运”的规则看上去非常诱人。每局游戏开始前,玩家选择 1 到 6 之间的一个数,并下 1 块钱的赌注。然后,庄家同时抛掷三颗骰子。如果这三颗骰子中都没有你选的数,你将输掉那 1 块钱;如果有一颗骰子的点数是你选的数,那么你不但能收回你的赌注,还能反赢 1 块钱;如果你选的数出现了两次,你将反赢 2 块钱;如果三颗骰子的点数都是你选的数,你将反赢 3 块钱。用赌博的行话来说,你所押的数出现了一次、两次或者三次,对应的赔率分别是 1:1 、 1:2 、 1:3 。

用于抛掷三颗骰子的装置很有创意。它是一个沙漏形的小铁笼子,三颗骰子已经预先装进了这个笼子里。庄家“抛掷”骰子,就只需要把整个沙漏来个 180 度大回旋,倒立过来放置即可。因此,“骰子掷好运”还有一个别名——“鸟笼”(birdcage)。

18 世纪英国皇家海军的水手间流行过一种叫做“皇冠和船锚”(Crown and Anchor)的赌博游戏,其规则与“骰子掷好运”一模一样。唯一不同之处只是骰子而已。普通骰子的六个面分别是 1 点到 6 点,而“皇冠和船锚”所用骰子的六个面则是六种不同的图案——扑克牌的黑、红、梅、方,再加上皇冠和船锚两种图案。之后,“赌博风”又蔓延到了商船和渔船上,“皇冠和船锚”也就逐渐走出了皇家海军的圈子。一般认为,这也就是“骰子掷好运”的起源了。现在,很多赌场都提供了“骰子掷好运”的赌博项目。

对玩家而言,这个游戏看上去简直是在白送钱:用三颗骰子掷出 6 个数中的一个,怎么也会有一半的概率砸中吧,那玩家起码有一半的时间是在赚钱,应当是稳赚不赔呀。其实,这是犯了和 de Méré 一样的错误——一颗骰子掷出玩家押的数有 1/6 的概率,并不意味着三颗骰子同时抛掷就会有 3/6 的概率出现此数。在抛掷三颗骰子产生的所有情况中,玩家押的数一次没出现所占比例大约是 57.87% 。也就是说,大多数时候玩家都是在赔钱的。

不过,考虑到赚钱时玩家有机会成倍地赢钱,这能否把输掉的钱赢回来呢?一些更为细致的计算可以告诉我们,即使考虑到这一点,游戏对玩家仍然是不利的:平均每赌 1 块钱就会让玩家损失大约 8 分钱。不过,我们还有另一种巧妙的方法,无需计算便可看出这个游戏对玩家是不利的。

这显然是一个没有任何技巧的赌博游戏,不管押什么胜率都是一样的。因此,不妨假设有 6 名玩家同时在玩这个游戏,这 6 个人分别赌 6 个不同的点数。此时玩家联盟的输赢也就足以代表单个玩家的输赢了。

假设每个人都只下注 1 块钱。抛掷骰子后,如果三颗骰子的点数都不一样,庄家将会从完全没猜中点数的三个人手中各赚 1 块,但同时也会赔给另外三人各 1 块钱;如果有两颗骰子点数一样,庄家会从没猜中点数的四个人那里赢得共 4 块,但会输给另外两人 3 块;如果三颗骰子的点数全一样,庄家则会赢 5 块但亏 3 块。也就是说,无论抛掷骰子的结果如何,庄家都不会赔钱!虽然一轮游戏下来有的玩家赚了,有的玩家亏了,但从整体来看这 6 名玩家是在赔钱的,因此平均下来每个玩家也是在不断输钱的。

Buffon 投针问题

递归解法

医生要给我打麻醉针,我怕针扎着疼,医生说:“既然怕疼,那我先给你打麻醉针。”

在上述第 22 则题目中,阿米巴原虫要么在有限代之后灭绝,要么无限地繁殖下去。我们的问题就是,究竟发生哪种情况的可能性更大。

实际上,这个题的答案选 C 。不妨把一个阿米巴原虫能无限繁殖下去的概率设为 p 。初始时的那个阿米巴原虫怎样才能无限繁殖下去呢?首先,它得分裂为两个阿米巴原虫,这有 2/3 的概率;然后,其中至少一个阿米巴原虫要无限繁殖下去。于是,我们得到式子:

其中, 表示两个阿米巴原虫都没能无限繁殖下去的概率。把上面的式子当作一个关于 p 的一元二次方程,可解得 p = 0 或 p = 1/2 。舍去 p = 0 ,于是得到 p = 1/2 。这就说明, A 、 B 两种情况的出现概率是相同的。

为什么我们可以舍去 p = 0 呢?要想说服自己这一点,这还真不容易。下面是一个不严谨的思路。如果我们把每个阿米巴原虫分裂成两个的概率记作 (原题则相当于 时的特例),那么阿米巴原虫无限繁殖下去的概率 p 就会满足:

解得 p = 0 或 。那么, p 究竟是多少呢?注意到以下三点:

  1. 时,问题的答案显然应该为 1 ;
  2. 不管 是多少,问题的答案显然都应该是正数;
  3. 连续变化的过程中,问题的答案也应该发生连续的变化(这个猜测是合理的,我们姑且假设它正确,不再进行论证)。

为了同时满足上述三点,只有这样一种可能:当 = 1/2 时,问题的答案为 0 ;当 < 1/2 时,舍去后面那个解,即问题的答案一直都是 0 ;当 > 1/2 时,舍去前面那个解,即问题的答案为 (2 · – 1) /

  1. A 、C 两人手中都没有梅花,等价于 B 、D 两人手中囊括了所有的梅花,它的概率与 A 、C 两人手中囊括所有梅花的概率相同。 

  2. 你或许会以为,全都装对的可能性很低,装错一个的可能性则略高一些。然而事实上,恰好有 9 封信装对,这是根本不可能的——如果其中 9 封信都装对了,剩下的那一封信肯定也装对了。 

  3. 在情况 A 中,你获胜的概率为 ;在情况 B 中,你获胜的概率为 。 

  4. 若每次取出黑球的概率为 p ,则第 1 次就取到黑球的概率为 p ,到第 4 次才取到黑球的概率为 ,后者永远比前者更低。 

  5. 不妨规定,即使有人取到了黑球,两人也继续往下取,直到把所有的小球都取光。整个游戏就可以等价地看作是,两人轮流取完所有的小球后,看看谁手中有那个黑球。由于 A 先取,因此最后 A 会取到 6 个小球, B 只能取到 5 个小球。所以,黑球在 A 手中的概率更大,等于 6/11 。 

  6. 每次操作后,黑球的数量要么不变,要么减 2 ,所以黑球的奇偶性始终保持相同。初始时盒子里有奇数个黑球,今后盒子里就永远有奇数个黑球。如果最后盒子里剩了 1 个小球,那它必然是黑球。 

  7. 不妨把这根木棒的长度设为 1 ,两个分割点的位置分别记作 x 、y ,则 x 和 y 都是 0 到 1 之间的随机数。那么,所有可能的 组合就对应了正方形 内的所有点。当 时,三边 满足两边之和大于第三边,两边之差小于第三边,得 ,占正方形总面积的 1/8;同理,当 时,也占了正方形总面积的 1/8,两种情况占总数的 1/4。 

  8. 随便选择两个点,再随便选择另外两个点,本质上相当于先随便选择四个点,再决定把这四个点配成怎样的两对。对于任意四个点 A 、B 、C 、D (在圆周上按此顺序排列)来说,我们都有三种不同的配对方案:① A – B, C – D ② A – C, B – D ③ A – D, B – C 。其中,只有方案 ② 对应的两条连线才会相交。因此,两条线段相交的概率是 1/3 。 

  9. 很多人的直觉都是,排第 1 可能性不大,排中间可能性更大。而实际上,B 选的那个数将会等可能地出现在各个位置。考虑 A 帮 B 抽了一个数,问帮 B 抽的这个数更有可能排第几。又或者等价于 A 选了 101 个数往空中一撒,问最后一个落地的数更有可能是排第几的数。 

  10. 洗好牌后,从前往后四张 A 所在的位置记为 。显然,形如 的情况显然比 更多,因为前者 可以取 4。 

  11. 很多人可能会认为,下一张牌是黑桃 2 的可能性更大,因为刚才翻出的首张 A 可能就是黑桃 A 。其实这种直觉是错误的。 为了说明这一点,我们不妨来看一种同样能实现绝对随机的另类洗牌方式:先把一副牌中的黑桃 A 抽出来,随机洗牌打乱剩下 51 张牌的顺序,然后把黑桃 A 插回这摞牌中(包括最顶端和最底端在内,共有 52 个可以插入的位置)。显然,黑桃 A 正好插到了这摞牌的首张 A 下面有 1/52 的可能性。根据同样的道理,首张 A 下面是黑桃 2 的概率也是 1/52 。事实上,任何一张牌都有可能出现在首张 A 的下面,它们出现的概率是相等的,都等于 1/52 。 

  12. 切了一次牌之后,你刚才翻开的那张牌就不可能在最上面了。换句话说,再次翻开的牌将会等可能地是剩余的 51 张牌中的任何一张,其中有 26 张牌和你第一次翻开的牌颜色不同,但只有 25 张牌和你第一次翻开的牌颜色相同。 

  13. 事实上,把 10 换成任意正整数,这个问题的答案都不会变——正面朝上的硬币个数是奇是偶的概率一样大。抛掷 n 枚硬币的结果可以用一个 n 位的二进制数 b 表示,不妨用 1 表示正面向上,显然,b 的每一位由全为 0 增加到全为 1 的过程中,偶数个 1 的情况与奇数个 1 出现的次数相等。 

  14. 既然 B 比 A 多抛掷一次,那这就说明,B 的正面和反面不可能都没 A 多(否则 B 的硬币总数不可能比 A 多)。另外,由于 B 只比 A 多抛掷一次,那这就说明,B 的正面和反面不可能都比 A 多(否则 B 的硬币总数至少比 A 大 2 )。综上所述,要么 B 的正面比 A 更多,要么 B 的反面比 A 更多。由于硬币本身是公正的,因此这两种情况出现的几率相等,它们各为 1/2 。 

  15. 把正面看作数字 1 ,反面看作数字 0 ,那么观众要求的目标序列就变成了 101010… 。如果在前面加一个小数点,这就变成了一个 0 到 1 之间的二进制小数 0.101010… ,它等于十进制中的 2/3 。而魔术师抛掷的硬币序列,则构成了一个 0 到 1 之间的随机数。如果某一次把 0 掷成了 1 ,就说明掷出的是一个比 2/3 更大的数;如果某一次把 1 掷成了 0 ,就说明掷出的是一个比 2/3 更小的数。显然,前者的概率是 1/3 ,后者的概率是 2/3 。其实,这个答案有一个非常直观的解释。想象 A 、B 两人玩一个掷硬币游戏。两人轮流抛掷硬币,但 A 必须掷出正面,B 必须掷出反面,谁掷错了谁就立即输掉游戏。如果 A 先抛硬币,谁输掉的概率更大?那当然是 A 输掉的概率更大,因为他先掷嘛! 

  16. 乍看上去, B 似乎没有什么不同意这种玩法的理由,毕竟“正反反”和“反反正”的概率是均等的。连续抛掷三次硬币可以产生 8 种不同的结果,上述两种各占其中的 1/8 。况且,序列“正反反”和“反反正”看上去又是如此对称,获胜概率怎么看怎么一样。不过实际情况是:虽然“正反反”和“反反正”在一串随机硬币正反序列中出现的频率理论上是相同的,但别忘了这两个序列之间有一个竞争的关系,它们要比赛看谁先出现。一旦抛掷硬币产生出了其中一种序列,游戏即宣告结束。这样一来, B 就处于了一个非常窘迫的位置:不管什么时候,只要掷出了一个正面,如果 B 没赢的话, B 就赢不了了——在出现“反反正”之前, A 的“正反反”必然会先出现。 

  17. 不同数字的个数恰好为 4 个的情况一共有 23400 种,它占总数的 。 

  18. 花 1 元赌某一个格子,中签的概率是 1/38 ,但却只能赢来 36 元。毫无疑问,轮盘赌是一个赤裸裸的对赌场更有利的赌博游戏。不过在这道题中, 105 这个数起到了比较关键的作用。由于每赢一次会得到 36 元,因此小明只需要赢 3 次或 3 次以上,便能实现赚着离开赌场了。而小明赢了 3 次或 3 次以上的概率超过了 1/2 。为什么在玩一个明显对赌场更有利的赌博游戏中,精确地花费 105 元钱,就能做到赚时多亏时少?如果每个人都这么做,赌场岂不是会被搞垮?这不跟游戏对赌场更有利的结论相矛盾吗?其实,赚的时候更多,并不意味着期望收益为正。虽然赚的时候多,亏的时候少,但赚的时候往往是赚小钱,亏的时候往往是亏大钱,平均算下来,玩家仍然是在不断送钱的。 

  19. 只需要考虑所有 6 种可能的子弹位置即可。先开枪者死亡的概率是后开枪者死亡概率的两倍。 

  20. 你或许会觉得,方案 B 更好,因为小明会更多地面对较弱的对手。而实际上,这个题的答案是 A 。想想中间那个人一定不能太强,因为中间那场输了,整个儿就没机会了。 

  21. 我们可以把问题等价地修改为,如果一个人发现自己的座位被别人占据后,他就叫这个人重新去找一个位置,自己则在这里坐下。结果你会发现,真正在飞机上跑来跑去不断换座位的人其实只有一个,就是第一个人。我们可以干脆叫他直接站在旁边,等他后面的 98 个人全部入座后,他再选个座位坐下。容易看出,他选中的座位要么是他自己的,要么是最后一个人的,这各占 50% 的概率。因此,最后一个人上来之后,正好能对号入座的概率也就是 50% 。 

  22. 参见《递归解法》一节,两种情况的出现概率相同。 

  23. 与上题同理,两种情况的出现概率相同。 

  24. 这是一个强者愈强,弱者愈弱的过程,因此其中一支球队完胜另一支球队的概率并不会太低,两支球队最终打成平手的概率也并不会太高。事实上,两种情况发生的概率是相同的,都是 1/101 。 

  25. 这个问题的说法很不严谨。我们给出一个更加严谨的叙述方法。让我们用 P 来表示,从 1 到 N 中随机取出两个正整数,它们互质的概率是多少。我们的问题就是,当 N 趋于无穷时, P 的值究竟是大于 1/2 ,等于 1/2 ,还是小于 1/2 。假设我们从全体正整数中随机选出了两个正整数 a 、 b 。其中, a 能被 2 整除的概率是 1/2 , b 能被 2 整除的概率是 1/2 。因而,它们都能被 2 整除的概率就是 1 / 22 。反过来,它们不都能被 2 整除的概率就是 1 – 1 / 22 。类似地,它们不都能被 3 整除的概率就是 1 – 1 / 32 ,它们不都能被 5 整除的概率就是 1 – 1 / 52 ……于是,它们互质的概率就是:(1 – 1 / 22) · (1 – 1 / 32) · (1 – 1 / 52) · (1 – 1 / 72) … 

如果您喜欢这篇文章,欢迎转载、演绎或用于商业目的,但请务必保留作者署名以及本文链接!
Copyright © Pandaman